Lee AY~Giaever G, 2014

Pubmed ID 24723613
Title Mapping the cellular response to small molecules using chemogenomic fitness signatures.
Authors Anna Y Lee, Robert P St Onge, Michael J Proctor, Iain M Wallace, Aaron H Nile, Paul A Spagnuolo, Yulia Jitkova, Marcela Gronda, Yan Wu, Moshe K Kim, Kahlin Cheung-Ong, Nikko P Torres, Eric D Spear, Mitchell K L Han, Ulrich Schlecht, Sundari Suresh, Geoffrey Duby, Lawrence E Heisler, Anuradha Surendra, Eula Fung, Malene L Urbanus, Marinella Gebbia, Elena Lissina, Molly Miranda, Jennifer H Chiang, Ana Maria Aparicio, Mahel Zeghouf, Ronald W Davis, Jacqueline Cherfils, Marc Boutry, Chris A Kaiser, Carolyn L Cummins, William S Trimble, Grant W Brown, Aaron D Schimmer, Vytas A Bankaitis, Corey Nislow, Gary D Bader, Guri Giaever
Abstract Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.
Citation Science 2014; 344:208-11

Datasets

Download the list of datasets
Papers Phenotype Conditions Collection Tested mutants Data Details
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0258-0098 [57.37 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0279-0212 [42.58 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0086-0128 [49.59 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4048-0884 [8.67 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4048-4355 [44.40 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4049-0206 [172.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4049-0218 [100.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4084-0029 [199.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4092-0690 [4.40 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4099-6547 [255.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4101-0031 [70.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4106-0037 [6.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4106-0057 [9.87 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0490-5701 [117.49 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4112-3296 [15.20 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4112-3381 [17.40 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4112-3522 [18.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4112-3890 [241.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4130-3005 [69.30 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4130-4525 [82.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4226-1401 [38.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4239-0030 [168.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4259-0013 [28.10 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4262-0212 [3.40 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) gallobenzophenone [83.62 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4335-0961 [93.30 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4476-0760 [85.30 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4477-0945 [21.30 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4482-3888 [16.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 4507-0395 [26.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k007-0731 [70.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k007-1105 [30.60 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k015-0025 [8.67 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k015-0029 [4.80 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k015-0030 [64.70 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0844-0104 [51.84 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k029-0042 [36.70 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k035-0009 [16.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k061-1018 [98.70 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k072-0102 [21.30 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k072-0165 [12.70 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k081-0041 [55.20 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k216-0215 [33.50 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k284-1091 [78.70 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k292-0204 [154.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k821-0043 [94.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0074-0074 [590.99 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) k898-0338 [155.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0206-0046 [107.00 uM] hom 4,810 Quantitative
Lee AY~Giaever G, 2014 growth (relative abundance in pooled culture) 0350-0096 [82.00 uM] hom 4,810 Quantitative

Curation history

April 11, 2014 Tested strains loaded.
April 11, 2014 Data loaded.