Kuroda K~Avalos J, 2019

Pubmed ID 31734159
Title Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.
Authors Kouichi Kuroda, Sarah K Hammer, Yukio Watanabe, José Montaño López, Gerald R Fink, Gregory Stephanopoulos, Mitsuyoshi Ueda, José L Avalos
Abstract Branched-chain alcohols are attractive advanced biofuels; however, their cellular toxicity is an obstacle to engineering microbes to produce them at high titers. We performed genome-wide screens on the Saccharomyces cerevisiae gene deletion library to identify cell systems involved in isobutanol-specific tolerance. Deletion of pentose phosphate pathway genes GND1 or ZWF1 causes hypersensitivity to isobutanol but not to ethanol. By contrast, deletion of GLN3 increases yeast tolerance specifically to branched-chain alcohols. Transcriptomic analyses revealed that isobutanol induces a nitrogen starvation response via GLN3 and GCN4, upregulating amino acid biosynthesis and nitrogen scavenging while downregulating glycolysis, cell wall biogenesis, and membrane lipid biosynthesis. Disruption of this response by deleting GLN3 is enough to enhance tolerance and boost isobutanol production 4.9-fold in engineered strains. This study illustrates how adaptive mechanisms to tolerate stress can lead to toxicity in microbial fermentations for chemical production and how genetic interventions can boost production by evading such mechanisms.
Citation Cell Syst 2019; 9:534-547.e5
Data abstract Deletion collection was assayed for growth in media with isobutanol.


Download the list of datasets
Paper Phenotype Condition Medium Collection Tested mutants Data Details
Kuroda K~Avalos J, 2019 growth (culture turbidity) isobutanol [1.4%] SC hap a 4,168 Quantitative
Kuroda K~Avalos J, 2019 growth (culture turbidity) standard SC hap a 4,383 Quantitative

Curation history


April 15, 2020 Ready to load.
May 4, 2020 Loaded.

Tested strains

April 15, 2020 Ready to load.
May 4, 2020 Loaded.